Low avidity circulating SARS-CoV-2 reactive CD8+ T cells with proinflammatory TEMRA phenotype are associated with post-acute sequelae of COVID-19

Supplemental Table of Contents

Supplementary Tables

Table S1: Fluorochrome coupled antibodies and fluorescent dye for analysis of SARS-CoV-2 reactive T cells

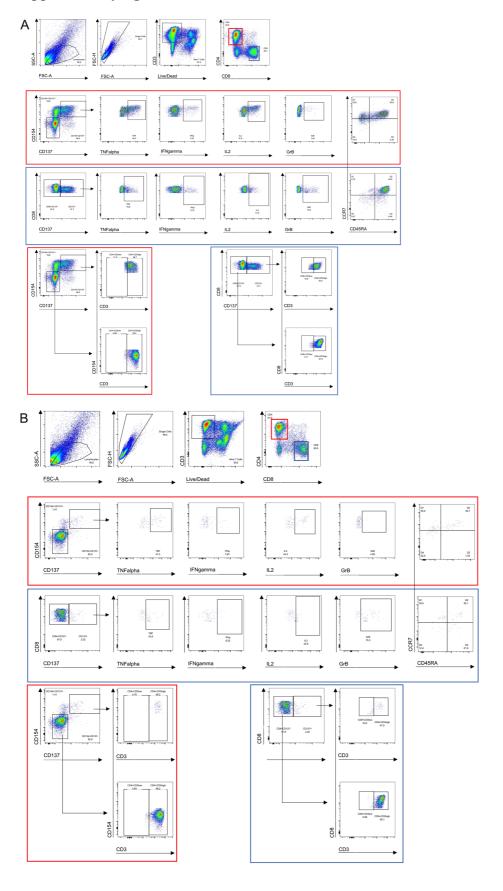
Table S2: Bivariate correlations - T cell frequencies

Supplementary Figures

Figure S1. Flow cytometry gating strategy for identification and quantification of SARS-CoV-2 reactive T cells.

Figure S2. Flow cytometry gating strategy for identification and quantification of memory SARS-CoV-2 reactive T cells.

Figure S3: PASC humoral immunity is not inferior compared to controls.


Table S1: Fluorochrome coupled antibodies and fluorescent dye for analysis of SARS-CoV-2 reactive T cells

Antibodies or fluorescent dye	Fluorochrome	Source	Cat. Nr.
Fixable Viability-Dye	eFluor780	eBioscience	65-0865- 14
anti CCR7 (clone G043H7)	PerCP-Cy5.5	BioLegend	353220
anti CD4 (clone OKT4)	A700	BioLegend	317426
anti CD8 (clone RPA-T8)	V500	BD Biosciences	560775
anti CD45RA (clone HI100)	BV605	BioLegend	304134
anti Granzyme B (clone GB11)	FITC	BioLegend	515403
anti IL2 (clone MQ1-17H12)	PE	BioLegend	500307
anti CD185(CXCR5) (clone MP4-25D2)	PE-Dazzle594	BioLegend	356927
anti CD137 (4-1BB) (clone 4B4-1)	PE-Cy7	BioLegend	309818
anti CD154 (CD40L) (clone 24-31)	A647	BioLegend	310818
anti TNFα (clone MAb11)	eFluor450	eBioscience	48-7349- 42
anti IFNγ (clone 4S.B3)	BV650	BioLegend	502538
anti CD3 (clone OKT3)	BV785	BioLegend	317330

Table S2: Bivariate correlations - T cell frequencies

	Correlation with age		Correlation with time since last antigenic		Correlation with BMI	
	Spearman r	p value	Spearman r	p value	Spearman r	p value
WT CD137+ among CD8+	0,126493592386992	0,376420819441063	-0,034970941453606	0,807520849248596	0,0108580953664043	0,939719733162756
WTCD8high among CD8+	0,241049207827381	0,082076956652709	-0,0074177045361675	0,958377119738032	0,0773393195612975	0,585779704156355
WT CD4high among CD4+	0,244372998224411	0,0778187321987719	-0,274304342194713	0,0490819744674925	0,0848578047546361	0,549757439476105
WT CD137+ among CD8+	0,138022496022477	0,329173373245977	-0,034970941453606	0,807520849248596	0,0108580953664043	0,939719733162756
WT Temra among reactive CD8+	0,235416824587929	0,0929472803264865	0,0955198402778933	0,504922914580182	0,144583104265733	0,311412096918477
WT IFNg+ among reactive CD8+	0,0428660710757835	0,762853206835942	0,2639875617519	0,0612249144373214	0,114634499294818	0,423129144400351
WT IL2+ among reactive CD8+	-0,0207399689553892	0,883970286421597	-0,0233509719321996	0,870796194110983	-0,180674006434728	0,204528611454522

Supplementary figures

Figure S1. Flow cytometry gating strategy for identification and quantification of SARS-CoV-2 reactive T cells. PBMCs were stimulated for 16 h with SARS-CoV-2 peptides spanning *in silico* predicted immunodominant parts of the WT Spike SARS-CoV-2 (figure B) or with SEB (figure A) or left untreated. After 2 h, Brefeldin A was added to the culture to block secretion of cytokines and effector molecules. Living single lymphocytes were analyzed for expression of CD3, CD4, and CD8. CD4+ T cells (orange boxes) were analyzed for the expression of CD154 and CD137. CD8+ T cells (blue boxes) were analyzed for expression of CD137. Both CD4+ and CD8+ T cells were further analyzed for the production of cytokines IFNγ, TNFα, IL2 and GrB. Furthermore, CD4+CD154+CD137+ and CD8+CD137+ T cells were analyzed for the expression of CD3low and CD3high. Representative example of 40 patients with post COVID-19 syndrome and 15 healthy convalescent individuals. Plots of a PASC study subject are depicted.

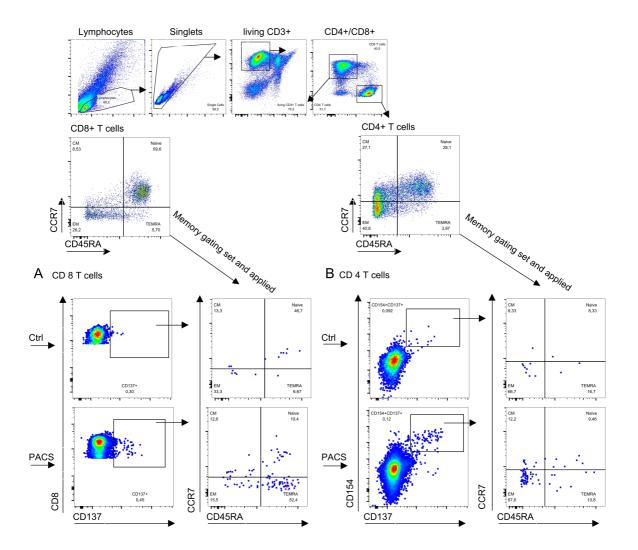
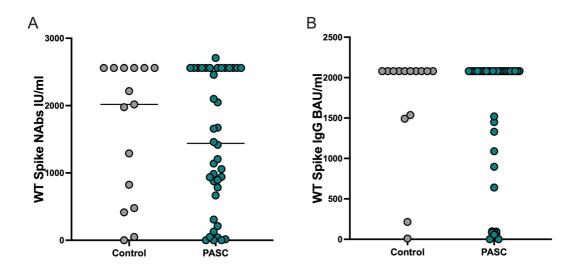



Figure S2. Flow cytometry gating strategy for identification and quantification of memory SARS-CoV-2 reactive T cells. CD4+CD154+CD137+ (B) and CD8+CD137+ (A) T cells were analyzed for the expression of CCR7 and CD45RA to evaluate the memory subsets (T_{CM}=CD45RA-CCR7+, T_{NAIVE}=CD45RA+CCR7+, T_{EM}=CD45RA-CCR7-T_{EMRA}=CD45RA+CCR7-). Pre-gating of the total memory CD4+ and CD8+ subsets was set and applied on SARS-COV-2 reactive CD4+ and CD8+ T cells. Plots of a PASC and a control study subject are depicted.

Figure S3: PASC humoral immunity is not inferior compared to controls. Analysis of WT Spike IgG and WT NAbs titers of both study groups. (A) Spike IgG titers. (B) WT NAbs titers. Scatterplots show line at median. Unpaired data were compared with Mann-Whitney-test. P<0.05 was considered significant, only significant p values are documented in the figures.